Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.
نویسندگان
چکیده
Analytical formulas are derived to compute the first-order effects produced by plane inhomogeneities on the point source seismic response of a fluid-filled stratified porous medium. The derivation is achieved by a perturbation analysis of the poroelastic wave equations in the plane-wave domain using the Born approximation. This approach yields the Frechet derivatives of the P-SV- and SH-wave responses in terms of the Green's functions of the unperturbed medium. The accuracy and stability of the derived operators are checked by comparing, in the time-distance domain, differential seismograms computed from these analytical expressions with complete solutions obtained by introducing discrete perturbations into the model properties. For vertical and horizontal point forces, it is found that the Frechet derivative approach is remarkably accurate for small and localized perturbations of the medium properties which are consistent with the Born approximation requirements. Furthermore, the first-order formulation appears to be stable at all source-receiver offsets. The porosity, consolidation parameter, solid density, and mineral shear modulus emerge as the most sensitive parameters in forward and inverse modeling problems. Finally, the amplitude-versus-angle response of a thin layer shows strong coupling effects between several model parameters.
منابع مشابه
Plane Strain Deformation of a Poroelastic Half-Space Lying Over Another Poroelastic Half-Space
The plane strain deformation of an isotropic, homogeneous, poroelastic medium caused by an inclined line-load is studied using the Biot linearized theory for fluid saturated porous materials. The analytical expressions for the displacements and stresses in the medium are obtained by applying suitable boundary conditions. The solutions are obtained analytically for the limiting case of undrained...
متن کاملAn Algorithm for Modeling and Interpretation of Seismoelectric Data
Generally speaking, seismoelectric modeling is a prospecting method based on seismic and electromagnetic waves, in which waves generated by a seismic source at the boundary of the two environments generate a relative fluid-solid motion formed as a result of antagonism between the elastic properties of the environment with the saturated fluid. This research has as its objective, a study of the e...
متن کاملEstimation of poroelastic parameters from seismograms using Biot theory
We investigate the possibility to extract information contained in seismic waveforms propagating in fluid-filled porous media by developing and using a full waveform inversion procedure valid for layered structures. To reach this objective, we first solve the forward problem by implementing the Biot theory in a reflectivity-type simulation program. We then study the sensitivity of the seismic r...
متن کاملLow-Frequency Asymptotic Analysis of Seismic Reflection From a Fluid-Saturated Medium
Reflection of a seismic wave from a plane interface between two elastic media does not depend on the frequency. If one of the media is poroelastic and fluid-saturated, then the reflection becomes frequency-dependent. This paper presents a low-frequency asymptotic formula for the reflection of seismic plane p-wave from a fluid-saturated porous medium. The obtained asymptotic scaling of the frequ...
متن کاملDynamic responses of poroelastic beams with attached mass-spring systems and time-dependent, non-ideal supports subjected to moving loads: An analytical approach
The present study is the first to analyze the dynamic response of a poroelastic beam subjected to a moving force. Moreover, the influences of attached mass-spring systems and non-ideal supports (with local movements in the supporting points or base due to the presence of factors such as gaps, unbalanced masses, and friction or seismic excitations) on the responses were investigated. Non-ideal s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 123 3 شماره
صفحات -
تاریخ انتشار 2008